Extractive Document Summarization

نویسندگان

  • Ramesh Nallapati
  • Bowen Zhou
  • Mingbo Ma
چکیده

We present two novel and contrasting Recurrent Neural Network (RNN) based architectures for extractive summarization of documents. The Classifier based architecture sequentially accepts or rejects each sentence in the original document order for its membership in the final summary. The Selector architecture, on the other hand, is free to pick one sentence at a time in any arbitrary order to piece together the summary. Our models under both architectures jointly capture the notions of salience and redundancy of sentences. In addition, these models have the advantage of being very interpretable, since they allow visualization of their predictions broken up by abstract features such as information content, salience and redundancy. We show that our models reach or outperform state-of-the-art supervised models on two different corpora. We also recommend the conditions under which one architecture is superior to the other based on experimental evidence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Text Summarization Using Cuckoo Search Optimization Algorithm

Today, with rapid growth of the World Wide Web and creation of Internet sites and online text resources, text summarization issue is highly attended by various researchers. Extractive-based text summarization is an important summarization method which is included of selecting the top representative sentences from the input document. When, we are facing into large data volume documents, the extr...

متن کامل

Biogeography-Based Optimization Algorithm for Automatic Extractive Text Summarization

    Given the increasing number of documents, sites, online sources, and the users’ desire to quickly access information, automatic textual summarization has caught the attention of many researchers in this field. Researchers have presented different methods for text summarization as well as a useful summary of those texts including relevant document sentences. This study select...

متن کامل

Evolutionary Algorithm for Extractive Text Summarization

Text summarization is the process of automatically creating a compressed version of a given document preserving its information content. There are two types of summarization: extractive and abstractive. Extractive summarization methods simplify the problem of summarization into the problem of selecting a representative subset of the sentences in the original documents. Abstractive summarization...

متن کامل

Neural Extractive Summarization with Side Information

Most extractive summarization methods focus on the main body of the document from which sentences need to be extracted. However, the gist of the document may lie in side information, such as the title and image captions which are often available for newswire articles. We propose to explore side information in the context of single-document extractive summarization. We develop a framework for si...

متن کامل

Extractive Spoken Document Summarization with Representation Learning Techniques

The rapidly increasing availability of multimedia associated with spoken documents on the Internet has prompted automatic spoken document summarization to be an important research subject. Thus far, the majority of existing work has focused on extractive spoken document summarization, which selects salient sentences from an original spoken document according to a target summarization ratio and ...

متن کامل

Toward a Gold Standard for Extractive Text Summarization

Extractive text summarization is the process of selecting relevant sentences from a collection of documents, perhaps only a single document, and arranging such sentences in a purposeful way to form a summary of this collection. The question arises just how good extractive summarization can ever be. Without generating language to express the gist of a text – its abstract – can we expect to make ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016